Extensions 1→N→G→Q→1 with N=C22 and Q=C4×Q8

Direct product G=N×Q with N=C22 and Q=C4×Q8
dρLabelID
Q8×C22×C4128Q8xC2^2xC4128,2155

Semidirect products G=N:Q with N=C22 and Q=C4×Q8
extensionφ:Q→Aut NdρLabelID
C221(C4×Q8) = C4×C22⋊Q8φ: C4×Q8/C42C2 ⊆ Aut C2264C2^2:1(C4xQ8)128,1034
C222(C4×Q8) = C24.558C23φ: C4×Q8/C4⋊C4C2 ⊆ Aut C2264C2^2:2(C4xQ8)128,1092
C223(C4×Q8) = Q8×C22⋊C4φ: C4×Q8/C2×Q8C2 ⊆ Aut C2264C2^2:3(C4xQ8)128,1072

Non-split extensions G=N.Q with N=C22 and Q=C4×Q8
extensionφ:Q→Aut NdρLabelID
C22.1(C4×Q8) = C8.14C42φ: C4×Q8/C42C2 ⊆ Aut C2232C2^2.1(C4xQ8)128,504
C22.2(C4×Q8) = C8.5C42φ: C4×Q8/C42C2 ⊆ Aut C2232C2^2.2(C4xQ8)128,505
C22.3(C4×Q8) = C4×C8.C4φ: C4×Q8/C42C2 ⊆ Aut C2264C2^2.3(C4xQ8)128,509
C22.4(C4×Q8) = C8.6C42φ: C4×Q8/C42C2 ⊆ Aut C2264C2^2.4(C4xQ8)128,510
C22.5(C4×Q8) = C23.211C24φ: C4×Q8/C42C2 ⊆ Aut C2264C2^2.5(C4xQ8)128,1061
C22.6(C4×Q8) = C42.286C23φ: C4×Q8/C42C2 ⊆ Aut C2264C2^2.6(C4xQ8)128,1692
C22.7(C4×Q8) = C42.287C23φ: C4×Q8/C42C2 ⊆ Aut C2264C2^2.7(C4xQ8)128,1693
C22.8(C4×Q8) = M4(2).5Q8φ: C4×Q8/C4⋊C4C2 ⊆ Aut C2264C2^2.8(C4xQ8)128,683
C22.9(C4×Q8) = M4(2).6Q8φ: C4×Q8/C4⋊C4C2 ⊆ Aut C2264C2^2.9(C4xQ8)128,684
C22.10(C4×Q8) = M4(2).27D4φ: C4×Q8/C4⋊C4C2 ⊆ Aut C22324C2^2.10(C4xQ8)128,685
C22.11(C4×Q8) = C23.250C24φ: C4×Q8/C4⋊C4C2 ⊆ Aut C2264C2^2.11(C4xQ8)128,1100
C22.12(C4×Q8) = M4(2)⋊9Q8φ: C4×Q8/C4⋊C4C2 ⊆ Aut C2264C2^2.12(C4xQ8)128,1694
C22.13(C4×Q8) = C24.176C23φ: C4×Q8/C2×Q8C2 ⊆ Aut C2232C2^2.13(C4xQ8)128,728
C22.14(C4×Q8) = M4(2)⋊8Q8φ: C4×Q8/C2×Q8C2 ⊆ Aut C2264C2^2.14(C4xQ8)128,729
C22.15(C4×Q8) = C42.128D4φ: C4×Q8/C2×Q8C2 ⊆ Aut C2264C2^2.15(C4xQ8)128,730
C22.16(C4×Q8) = C23.227C24φ: C4×Q8/C2×Q8C2 ⊆ Aut C2264C2^2.16(C4xQ8)128,1077
C22.17(C4×Q8) = Q8×M4(2)φ: C4×Q8/C2×Q8C2 ⊆ Aut C2264C2^2.17(C4xQ8)128,1695
C22.18(C4×Q8) = C4×C2.C42central extension (φ=1)128C2^2.18(C4xQ8)128,164
C22.19(C4×Q8) = C24.624C23central extension (φ=1)128C2^2.19(C4xQ8)128,166
C22.20(C4×Q8) = C24.625C23central extension (φ=1)128C2^2.20(C4xQ8)128,167
C22.21(C4×Q8) = C24.626C23central extension (φ=1)128C2^2.21(C4xQ8)128,168
C22.22(C4×Q8) = C8×C4⋊C4central extension (φ=1)128C2^2.22(C4xQ8)128,501
C22.23(C4×Q8) = C4⋊C813C4central extension (φ=1)128C2^2.23(C4xQ8)128,502
C22.24(C4×Q8) = C4⋊C814C4central extension (φ=1)128C2^2.24(C4xQ8)128,503
C22.25(C4×Q8) = C4⋊C43C8central extension (φ=1)128C2^2.25(C4xQ8)128,648
C22.26(C4×Q8) = C42.61Q8central extension (φ=1)128C2^2.26(C4xQ8)128,671
C22.27(C4×Q8) = C42.327D4central extension (φ=1)128C2^2.27(C4xQ8)128,716
C22.28(C4×Q8) = C2×C4×C4⋊C4central extension (φ=1)128C2^2.28(C4xQ8)128,1001
C22.29(C4×Q8) = C2×C23.63C23central extension (φ=1)128C2^2.29(C4xQ8)128,1020
C22.30(C4×Q8) = C2×C23.65C23central extension (φ=1)128C2^2.30(C4xQ8)128,1023
C22.31(C4×Q8) = C2×C23.67C23central extension (φ=1)128C2^2.31(C4xQ8)128,1026
C22.32(C4×Q8) = Q8×C2×C8central extension (φ=1)128C2^2.32(C4xQ8)128,1690
C22.33(C4×Q8) = C2×C84Q8central extension (φ=1)128C2^2.33(C4xQ8)128,1691
C22.34(C4×Q8) = C24.631C23central stem extension (φ=1)128C2^2.34(C4xQ8)128,173
C22.35(C4×Q8) = C24.632C23central stem extension (φ=1)128C2^2.35(C4xQ8)128,174
C22.36(C4×Q8) = C24.633C23central stem extension (φ=1)128C2^2.36(C4xQ8)128,175
C22.37(C4×Q8) = C24.634C23central stem extension (φ=1)128C2^2.37(C4xQ8)128,176
C22.38(C4×Q8) = C24.635C23central stem extension (φ=1)128C2^2.38(C4xQ8)128,177
C22.39(C4×Q8) = C24.636C23central stem extension (φ=1)128C2^2.39(C4xQ8)128,178
C22.40(C4×Q8) = (C2×C8).Q8central stem extension (φ=1)128C2^2.40(C4xQ8)128,649
C22.41(C4×Q8) = C42.27Q8central stem extension (φ=1)128C2^2.41(C4xQ8)128,672
C22.42(C4×Q8) = C42.120D4central stem extension (φ=1)128C2^2.42(C4xQ8)128,717

׿
×
𝔽