extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C4×Q8) = C8.14C42 | φ: C4×Q8/C42 → C2 ⊆ Aut C22 | 32 | | C2^2.1(C4xQ8) | 128,504 |
C22.2(C4×Q8) = C8.5C42 | φ: C4×Q8/C42 → C2 ⊆ Aut C22 | 32 | | C2^2.2(C4xQ8) | 128,505 |
C22.3(C4×Q8) = C4×C8.C4 | φ: C4×Q8/C42 → C2 ⊆ Aut C22 | 64 | | C2^2.3(C4xQ8) | 128,509 |
C22.4(C4×Q8) = C8.6C42 | φ: C4×Q8/C42 → C2 ⊆ Aut C22 | 64 | | C2^2.4(C4xQ8) | 128,510 |
C22.5(C4×Q8) = C23.211C24 | φ: C4×Q8/C42 → C2 ⊆ Aut C22 | 64 | | C2^2.5(C4xQ8) | 128,1061 |
C22.6(C4×Q8) = C42.286C23 | φ: C4×Q8/C42 → C2 ⊆ Aut C22 | 64 | | C2^2.6(C4xQ8) | 128,1692 |
C22.7(C4×Q8) = C42.287C23 | φ: C4×Q8/C42 → C2 ⊆ Aut C22 | 64 | | C2^2.7(C4xQ8) | 128,1693 |
C22.8(C4×Q8) = M4(2).5Q8 | φ: C4×Q8/C4⋊C4 → C2 ⊆ Aut C22 | 64 | | C2^2.8(C4xQ8) | 128,683 |
C22.9(C4×Q8) = M4(2).6Q8 | φ: C4×Q8/C4⋊C4 → C2 ⊆ Aut C22 | 64 | | C2^2.9(C4xQ8) | 128,684 |
C22.10(C4×Q8) = M4(2).27D4 | φ: C4×Q8/C4⋊C4 → C2 ⊆ Aut C22 | 32 | 4 | C2^2.10(C4xQ8) | 128,685 |
C22.11(C4×Q8) = C23.250C24 | φ: C4×Q8/C4⋊C4 → C2 ⊆ Aut C22 | 64 | | C2^2.11(C4xQ8) | 128,1100 |
C22.12(C4×Q8) = M4(2)⋊9Q8 | φ: C4×Q8/C4⋊C4 → C2 ⊆ Aut C22 | 64 | | C2^2.12(C4xQ8) | 128,1694 |
C22.13(C4×Q8) = C24.176C23 | φ: C4×Q8/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.13(C4xQ8) | 128,728 |
C22.14(C4×Q8) = M4(2)⋊8Q8 | φ: C4×Q8/C2×Q8 → C2 ⊆ Aut C22 | 64 | | C2^2.14(C4xQ8) | 128,729 |
C22.15(C4×Q8) = C42.128D4 | φ: C4×Q8/C2×Q8 → C2 ⊆ Aut C22 | 64 | | C2^2.15(C4xQ8) | 128,730 |
C22.16(C4×Q8) = C23.227C24 | φ: C4×Q8/C2×Q8 → C2 ⊆ Aut C22 | 64 | | C2^2.16(C4xQ8) | 128,1077 |
C22.17(C4×Q8) = Q8×M4(2) | φ: C4×Q8/C2×Q8 → C2 ⊆ Aut C22 | 64 | | C2^2.17(C4xQ8) | 128,1695 |
C22.18(C4×Q8) = C4×C2.C42 | central extension (φ=1) | 128 | | C2^2.18(C4xQ8) | 128,164 |
C22.19(C4×Q8) = C24.624C23 | central extension (φ=1) | 128 | | C2^2.19(C4xQ8) | 128,166 |
C22.20(C4×Q8) = C24.625C23 | central extension (φ=1) | 128 | | C2^2.20(C4xQ8) | 128,167 |
C22.21(C4×Q8) = C24.626C23 | central extension (φ=1) | 128 | | C2^2.21(C4xQ8) | 128,168 |
C22.22(C4×Q8) = C8×C4⋊C4 | central extension (φ=1) | 128 | | C2^2.22(C4xQ8) | 128,501 |
C22.23(C4×Q8) = C4⋊C8⋊13C4 | central extension (φ=1) | 128 | | C2^2.23(C4xQ8) | 128,502 |
C22.24(C4×Q8) = C4⋊C8⋊14C4 | central extension (φ=1) | 128 | | C2^2.24(C4xQ8) | 128,503 |
C22.25(C4×Q8) = C4⋊C4⋊3C8 | central extension (φ=1) | 128 | | C2^2.25(C4xQ8) | 128,648 |
C22.26(C4×Q8) = C42.61Q8 | central extension (φ=1) | 128 | | C2^2.26(C4xQ8) | 128,671 |
C22.27(C4×Q8) = C42.327D4 | central extension (φ=1) | 128 | | C2^2.27(C4xQ8) | 128,716 |
C22.28(C4×Q8) = C2×C4×C4⋊C4 | central extension (φ=1) | 128 | | C2^2.28(C4xQ8) | 128,1001 |
C22.29(C4×Q8) = C2×C23.63C23 | central extension (φ=1) | 128 | | C2^2.29(C4xQ8) | 128,1020 |
C22.30(C4×Q8) = C2×C23.65C23 | central extension (φ=1) | 128 | | C2^2.30(C4xQ8) | 128,1023 |
C22.31(C4×Q8) = C2×C23.67C23 | central extension (φ=1) | 128 | | C2^2.31(C4xQ8) | 128,1026 |
C22.32(C4×Q8) = Q8×C2×C8 | central extension (φ=1) | 128 | | C2^2.32(C4xQ8) | 128,1690 |
C22.33(C4×Q8) = C2×C8⋊4Q8 | central extension (φ=1) | 128 | | C2^2.33(C4xQ8) | 128,1691 |
C22.34(C4×Q8) = C24.631C23 | central stem extension (φ=1) | 128 | | C2^2.34(C4xQ8) | 128,173 |
C22.35(C4×Q8) = C24.632C23 | central stem extension (φ=1) | 128 | | C2^2.35(C4xQ8) | 128,174 |
C22.36(C4×Q8) = C24.633C23 | central stem extension (φ=1) | 128 | | C2^2.36(C4xQ8) | 128,175 |
C22.37(C4×Q8) = C24.634C23 | central stem extension (φ=1) | 128 | | C2^2.37(C4xQ8) | 128,176 |
C22.38(C4×Q8) = C24.635C23 | central stem extension (φ=1) | 128 | | C2^2.38(C4xQ8) | 128,177 |
C22.39(C4×Q8) = C24.636C23 | central stem extension (φ=1) | 128 | | C2^2.39(C4xQ8) | 128,178 |
C22.40(C4×Q8) = (C2×C8).Q8 | central stem extension (φ=1) | 128 | | C2^2.40(C4xQ8) | 128,649 |
C22.41(C4×Q8) = C42.27Q8 | central stem extension (φ=1) | 128 | | C2^2.41(C4xQ8) | 128,672 |
C22.42(C4×Q8) = C42.120D4 | central stem extension (φ=1) | 128 | | C2^2.42(C4xQ8) | 128,717 |